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ABSTRACT 

 

We know that calculating complex integrals is not as easy as calculating real integrals. Also, the complex integration 

techniques in comparison to real integration techniques are limited. In this paper we attempt to introduce partial-fraction 

decomposition technique of real integration for complex integration and with respect to the nature of complex integrals, 

generalize this method for a certain type of complex integral function that has no standard conditions. 
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INTRODUCTION 

 

To calculate real integral ( )f x dx , if the function under 

the integral ( )f x is a rational function in the 

form
( )

( )

m

n

p x

p x
, one of the best methods to integrate is 

partial-fraction decomposition technique (Maron, 1970)
 

.On the other hand, in the general case, we know that 

calculation of complex integral typically, is done by one 

of the following methods: 1) Using complex integration 

definition or primitive function, 2) Using Cauchy or 

Cauchy-Goursat theorem, and their generalization, 3) 

Applying Cauchy's integral formula and its 

generalization, and 4) Using the residue theorem and 

Laurent expansions. Each of aforementioned methods has 

their own terms and difficulty in calculating (Brown, and 

Churchill, 1996). In the present study, we want to 

combine partial-fraction decomposition integration with 

methods 2 or 3, and introduce partial-fraction 

decomposition integration method for complex 

integration, and then generalize it for some certain 

complex functions which have no standard conditions to 

use it. First we review methods 2 and 3 as it is required in 

this paper. 

 

Cauchy Theorem: Let function  f  be analytic at each 

point inside and on simple closed contour c and f  be 

continuous at each point inside c .  Then we have  

  0
c

f z dz ∮  

Proof.  Assume that parametric equation of simply-closed 

c is as below which is in positive direction: 

a t b    

     Z t x t iy t   

And let function      , , yf z u x y iv x   be inside 

and on simple closed contour c. Then according to 

complex integral definition, we have  

      .

a

c b

f z dz f z t z t dt ∮  

Also, we know  

                      .f z t z t u t x t v t y t i v t x t u t y t         

Therefore,  

     
a a

c b b

f t dt ux y dt i x uy dt       ∮  

Since  

   ,dx x t dt dy y t dt    

Then 

     
c c c

f z dz udx dy i dx udy     ∮  

Assume that R is at any point inside simply-closed 

contour c. since function f is continuous in R, then v  and 

u  are continuous, and since  f    is continuous, then the 

first-order partial derivatives of v  and u  in R are *Corresponding author e-mail:  mousa.ilie93@gmail.com 
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continuous. Therefore, according to Green’s theorem we 

have 

 
c R R

u u
f z dz dA i dA

x y x y

       
       

      
∮ ∬ ∬  

But according to Cauchy-Riemann equations  

v u

x y

 
 

 
,  

u v

x y

 


 
  

 

Hence both integrals in the right side of above equation 

are zero, thus    0f z dz    

 

Cauchy-Goursat theorem: Let function f be analytic at 

each point inside and on simple closed contour c.  Then 

we have   0
c

f z dz ∮ . 

Proof. Brown and Churchill (1996) 

Example 1:  find complex integral 

2

3c

z
dz

z 
∮  where c 

is contour of positively oriented circle 1z  .  

Since function 

2

3

z

z 
 is analytic at any point inside 

simply-closed contour c, then based on Cauchy-Goursat 

theorem, the resulting integral is zero. 

 

Example 2:  evaluate complex integral  

2

1
0

2 2c

dz
z z


 

∮  where c is contour of positively 

oriented circle 1z  .  

Since function 
2

1

2 2z z 
 is analytic at any point 

inside simply-closed contour c, then based on Cauchy-

Goursat theorem, the resulting integral is zero. 

 

Note: Cauchy-Goursat theorem for multiple connected 

domains is also established. 

 

Example 3: find complex integral 

2

sin
2

D

z
dz

z




 
 
 

 where D is the contour of domain 

between circle |z|=4 and a rectangle with sides along x = ± 

1 and y = ± 1 in positive direction. 

Since function 
2

sin
2

z

z



 
 
 

  is analytic at any point inside 

and on multiply- connected domain D, then  

z 2
dz 0

z
sin

2
D




 
 
 

∮   

Example 4: evaluate complex integral 2

1
dz

3z 1D 
∮   

where D is the contour of domain between circle |z|=4 
and a rectangle with sides along x = ± 1 and y = ± 1 in 
positive direction. 

Since function 
2

1

3 1z 
  is analytic at any point inside 

and on multiply- connected domain D, then 

2

1
0

3 1D

dz
z




∮  . 

 

Cauchy's integral formula: suppose f is analytic at any 

point inside and on simply-closed contour c in positive 

direction and  is a point inside c. then: 

 
 

0

0

1

2 c

f z
f z dz

i z z



∮  

Proof.  since f is continuous in , hence  

 

Now let an arbitrary positive number ρ be less than  

and circle  be inside or on simply-closed 

contour c in positive direction. Then  

 

Since function  is analytic in a closed contour 

including paths c and , and at all points between them. 
According to Brown  and Churchill

 
(1996), we know  

   

00 0c c

f z f z
dz dz

z z z z


 
∮ ∮  

So we can write 

 
 

   

0

0

0

0 0 0

f z f z f z1
dz f z dz dz

z z z z z zc c c


 

  
∮ ∮ ∮  

On the hand, we know  

0 0

1
dz 2πi

z zc




∮  

Then 

 
 

   0

0

0 0

2π  
c c

f z f z f z
dz i f z dz

z z z z


 

 
∮ ∮  

Since the length of  is equal to , based on Brown 

and Churchill
  
(1996), we can write 
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   0

0

2π 2π
c

f z f z
dz

z z
 




 


E

 

Therefore, 

 
 0

0

2  2
c

f z
dz i f z

z z
  


∮  

 

Since the right-hand side of this inequality is non-negative 

integer constant and is smaller than any small arbitrary 

positive number, it should be zero. This completes the 

proof. 

 

Generalization of Cauchy's integral formula: let 

function f  be analytic at all points inside and on simply 

closed contour c , and  be a point on c. then 

   
 

 
0 1

0

!

2

n

n

c

f zn
f z dz

i z z 



∮  

Proof. First we show that 

 
Let , where d is the shortest distance of 

 points Z on c. then, following Cauchy's integral 

formula, we have 
     

  
0 0

0 0 0 0

1 1 1 1 1

2 2c c

f z z f z f z
dz dz

z i z z z z z z i z z z z z 

    
   

        
∮ ∮

  

Now, since f is continuous on c, then we want to show 

that, letting , The latter integral tends to 

 

 0c

f z
dz

z z
∮ . To do this, first we write the difference 

between the two integrals 

    
 2

0 0 0

1 1

c

f z dz
z z z z z z z

 
 

     
∮  

as 

 

   
2

0 0c

f z
z dz

z z z z z


  
∮  

Then we assume M denotes maximum value of  on c 

and  L is the length of c. Note that , and 

. Thus 

 

    2 2

0 0c

z MLf z
z dz

d z dz z z z z


 

   
∮  

where the last fraction tends to be zero. If , thus  

     

 
0

2
0

0

f z z f z f z1
lim dz

z 2πi z zz
c c

 

  


 
∮ ∮  

Then 

 
 

 
0 2

0

1

2 c

f z
f z dz

i z z



 ∮  

Similarly, the theorem for the n
th

 order derivative is also 

proved. 

Note:  Cauchy's integral formula for multiple connected 

domains is also established if f is analytic at any point 

inside and on multiply-connected domain D in positive 

direction and  is a point inside domain D. then: 

 
 

 
0

0

1

2 D

f z
f z dz

i z z 




∮

 

   
 

 
0 1

0

!

2

n

n

D

f zn
f z dz

i z z 






∮  

 

Using Cauchy's integral formula and its generalization 
to calculate complex integrals (method 3): if 

function ( )f z
 
is analytic on and inside multiply- 

connected domain D or simply- closed contour c in 

positive direction, and let  be a point inside D or c. then 

 

 

Example 5: find complex integral 

  2

z

9 1c z z 
∮  

where c is contour of positively oriented circle 2z  . 

Let function  be analytic throughout c, and  be 

a point inside circle. According to Cauchy's integral 

formula we can write 

 

  
22

2
59 9c

z i
dz i

z z i i



 

   
     

∮  

   

Example 6: evaluate complex integral 
 
4

exp 2z

zc

dz∮   

where c is contour of positively oriented circle 1z  . 

Let function  be analytic on and inside c, and 0 

be a point inside circle. According to Cauchy's integral 

formula we have 

 
 

   '''

4

expexp 2 2 2
exp 2 0

3! 3c

z i i
dz z z

z

 
  ∮   
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Example 7: evaluate complex integral 

 
2

2

1

4c

dz
z 

∮  

where c is  

Let function  be analytic on and inside c, and 

 be a point inside circle. We have 

 

       

'

2 2 2 2
2

1 1 2 1
2

1! 162 2 24c c

i
dz dz z i

z i z i z iz

 
 
    
     

∮ ∮

  

Example 8: find complex integral 
2

1
dz

4c z 
∮  where c 

is  

Let function  be analytic on and inside c, and  

be a point inside circle. Thus 

2

1 1 π
dz 2πi

4 2i 2i 2c z

 
  

  
∮   

Example 9: find 
 

   2

cos 1

1 9D

z
dz

z z



 
∮   where D is 

the contour of multiply- connected domain  

in positive direction. 

 
 

  
 

2

cos 1 cos 1 1
2

1 9 51 9D

z
dz i i

z z






  
  

   
∮   

Example 10: find 

 
2

2

z 1
dz

z 4D




∮  where D is the 

contour of multiply- connected domain  

in positive direction. 

We have: 

 

   

'

2 2
2

z 1 2πi z 1 πi
dz z 2

1! 16z 2z 4D

      
   

∮   

 

Complex Integration with Partial-Fraction 

Decomposition Technique 

According to the fundamental theorem of algebra, we 

know that every n
th

 degree polynomial 
1

1( ) ...n n

n n np z a z a z a

     1,...,i n

ia C 
 
has n complex root 

2
 .In general, the roots can be 

divided into two categories: a) Distinct roots as 

1 2, ,...znz z  , and b) Non-distinct roots and some of them 

as  which are repetition of  degree. In 

this case, according to (a), n
th

 degree polynomial ( )np z  , 

can be decomposed as:  

1 2( ) ( )( )...( )n n np z a z z z z z z    and according to 

(b), n
th

 degree polynomial ( )np z  can be decomposed as 

1

11( ) ( )...( ) ...( ) ...( )k

k

rr

n n i i Np z a z z z z z z z z      .
2
 

 

Now we consider the complex integral ( )
c

f z dz where 

c is a positively-oriented simple closed contour  and 

( )f z is a complex rational function in the form 
( )

( )

m

n

p z

p z
 

( m n ). Assume that more than one of ( )np z roots is 

inside simple closed contour (otherwise integration will 

be calculated by one of the methods 2, 3, or 4), Then we 

introduce one of following integration modes as complex 

integration with partial-fraction decomposition technique: 

 If the roots of n
th

 degree polynomial ( )np z is like 

type (a), the partial fraction decomposition of ( )

( )

m

n

p z

p z

 is 

given by

 

 

1 2

1 2

( )
...

( )

m n

n n

p z AA A

p z z z z z z z
   

  
       (1) 

 

Where A1... An are distinct constants that are solved by 

denomination of the right-hand fraction and equating 

coefficients of terms in polynomials of two sides of 

fraction, thus 

1 2

1 2

( ) ... n

nc c c c

AA A
f z dz dz dz dz

z z z z z z
   

       (2) 

Each of above integrals can be easily calculated by 

Cauchy or Cauchy-Goursat theorem. 

 If the roots of n
th

 degree polynomial ( )np z is like 

type (b), The partial fraction decomposition of 
( )

( )

m

n

p z

p z
 is 

given by

 

 

1

1

1

11 11

1

( )
... ... ... ...

( ) ( ) ( )

k

k

i k

krrm N

rr

n i i i N

BBp z AA B

p z z z z z z z z z z z
        

       

(3) 

 

Where A and B are distinct constants which are solved by 

denomination of the right-hand fraction and equating 

coefficients of terms in polynomials of two sides of 

fraction, thus 

1

1

1

11 11

1

( ) ... ... ... ...
( ) ( )

k

k

i k

krr N

rr

i i i Nc c c c c c

BB AA B
f z dz dz dz dz dz dz

z z z z z z z z z z
        

         

(4) 
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Each of above integrals also can be easily calculated by 

Cauchy or Cauchy-Goursat theorem.  

 

Here are some examples: 

Example 11:  find complex integral 
2

2

3 4

3 2
c

z
dz

z z



  where c is contour of positively 

oriented circle 3z  .  

Since the degree of polynomials of the numerator and 

denominator are equal, first divide the denominator into 

the numerator: 
2

2 2

3 4 9 10
3

3 2 3 2

z z

z z z z

 
 

   
 

In this case, the roots of right-hand polynomial 
2 3 2z z  can be decomposed as: 

2

2

3 4 1 8
3

3 2 1 2

z

z z z z


  

     
Thus  

2

2

3 4 1 8
3

3 2 1 2

                       2 (1) 2 (8) 18

c c c c

z
dz dz dz dz

z z z z

i i i  


  

   

   

   

 
Example 12: find complex integral 

3

4 3 2

4

( 2 3 8 4)
c

z
dz

z z z z



    where c is contour of 

positively oriented circle 4z  .  

The partial fraction decomposition is given by 

3

4 3 2 2

1 1

4 1 13 3

( 2 3 8 4) ( 1) ( 1) ( 2) ( 2)

z

z z z z z z z z




   

         
Thus 

3

4 3 2 2

1 1

4 1 13 3

( 2 3 8 4) ( 1) ( 1) ( 2) 2

1 1
                                             =2 i( ) 2 ( ) 2 (1) 2

3 3

c c c c c

z
dz dz dz dz dz

z z z z z z z z

i i i   




   

       


   

    

 
Example 13:  evaluate complex integral 

2

4 3 2

1

2
c

z
dz

z iz z



  where c is contour of positively 

oriented circle 2z  .  

 

The roots of polynomial of denominator can be 

decomposed as: 

2

4 3 2 2 2

3 3

1 1 15 10

2 ( ) ( )

i i

z

z iz z z z z i z i


   

   
 

Thus 
 

Generalization of the method for non-standard  

complex functions 

If a complex function under the integral ( )
c

f z dz is not 

rational but as the form 
( )

( )n

g z

p z
 provided that the function 

( )g z  is analytic at each point inside and on simple 

closed contour c, integration with partial-fraction 

decomposition can be done as following: 

 If the roots of n
th

 degree polynomial ( )np z is like 

type (a), then rational function 
1

( )np z
can be 

decomposed as: 

1 2

1 2

1
...

( )

n

n n

AA A

p z z z z z z z
   

  
       (5) 

 

Where A1... An are distinct constants solved by 

denomination of the right-hand fraction and equating 

coefficients of terms in polynomials of two sides of 

fraction, thus 

1 2

1 2

( )( ) ( )
( ) ... n

nc c c c

A g zA g z A g z
f z dz dz dz dz

z z z z z z
   

        (6) 

 

Again, each of above integrals can be easily calculated by 

Cauchy or Cauchy-Goursat theorem. 

 If the roots of n
th

 degree polynomial ( )np z is like 

type (b), then rational function 
1

( )np z
can be 

decomposed as: 

1

1

1 1

1 11 11

1

1
... ... ... ... ...

( ) ( ) ( ) ( ) ( )

k

k

k k

krr k N

rr

n i i i i N

BB B AA B

p z z z z z z z z z z z z z
          

     

(7) 

Where A and B are distinct constants solved by 

denomination of the right-hand fraction and equating 

coefficients of terms in polynomials of two sides of 

fraction, thus 

1

1

1 1

11 11

1

( )( ) ( )
( ) ... ... ...

( ) ( )

r N

r

i i Nc c c c c

B g z AA g z B g z
f z dz dz dz dz dz

z z z z z z z z
      

       
         (8) 

 

Each of above integrals can be easily calculated by 

Cauchy or Cauchy-Goursat theorem. 

Example 14:  get 
2

2(1 sin( ))
2

1
c

z

dz
z




 where c is the 

cycle 2z  in positive direction.  

According the roots of denominator polynomial, we have 

2

2 1 1

1 1 1z z z
 

  
 

2

4 3 2 2 2

3 3

1 1 15 10

2 ( ) ( )

3 3 3
                            =2 ( ) 2 ( )

5 10 5

c c c c c

i i

z
dz dz dz dz dz

z iz z z z z i z i

i i
i i


 


   

   


   

    
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Thus 

 

 

Example 15:  find 
3 2

2

4 3 18
c

zcos z
dz

z z z



   where c is 

the cycle 5z  in positive direction. 

We have 

3 2 2

4 4 6

2 25 25 5

4 3 18 2 3 ( 3)

z

z z z z z z
  

       
Therefore 

3 2 2

4 4 6
cos cos cos

2 25 25 5

4 3 18 2 3 ( 3)

4 4 6 16
                                  =2 i( cos 2 ) 2 ( cos( 3 )) 2 ( sin( 3 ))

25 25 5 25

c c c c

z z z
zcos z

dz dz dz dz
z z z z z z

i i i

  



      

  
     


    

   

 

Example 16:  find 
4 3 2

1 2

2

z

c

e
dz

z z z



  where c is the 

cycle 2z  in positive direction. 

We have 

4 3 2 2 2

1 2 1 2 1

2 1 ( 1)z z z z z z z
   

   
 

Thus 

4 3 2 2 2

1 2 2(1 2 ) 1 2 2(1 2 ) 1 2

2 1 ( 1)

                           =2 i(2(1-2e )) 2 i(-2e ) 2 (2(1 2 )) 2 ( 2 ) 12 ( 1)

z z z z z

c c c c c

e e e e e
dz dz dz dz dz

z z z z z z z

i e i e i e    

    
   

   

      

    
 

Note that integration with partial-fraction decomposition 

and its generalization, according to Cauchy-Goursat 

theorem or Cauchy's integral formula, can be expanded 

and used for multiple connected domains. 
2 

Example 17:  evaluate 

2

4 22 1
D

z
dz

z z


   where D is 

the contour of multiply- connected domain
1

2
2

Z   in 

positive direction.  

To solve this, we have 

2

4 2 2 2

1 1

4 4 4 4

2 1 ( ) ( ) ( ) ( )

i i
z

z z z i z i z i z i



   
     

 

 

Therefore, 

2

4 2 2 2

1 1

4 4 4 4

2 1 ( ) ( ) ( ) ( )

                          =2 ( ) 2 ( )
4 4

D D D D D

i i
z

dz dz dz dz
z z z i z i z i z i

i i
i i 

    



   
     


   

    
 

 

Example 18:  find 
2 2

exp( 2)

( 5 6)
D

z
dz

z z




  where D is the 

contour of multiply- connected domain 1 4z   in 

positive direction.  

We have 

2 2 2 2

1 2 1 2 1

( 5 6) 2 ( 2) 3 ( 3)z z z z z z
   

     
 

2 2 2 2

exp( 2) 2exp( 2) exp( 2) 2exp( 2) exp( 2)

( 5 6) ( 2) ( 2) ( 3) ( 3)

                            =2 i(2exp( ))+2 i(exp( ))-2 i(2exp(1))+2 i(exp(1))=6 i(1-e)

D D D D D

z z z z z
dz dz dz dz dz

z z z z z z

    

    

    
   

         
 

 

Example 19:  evaluate 
3 2( )

D

Logz
dz

z iz z i


   where 

D is the contour of multiply- connected 

domain 1 3 2z    in positive direction. 

(Let ogL z be on the principal branch) 

We have 

3 2 2

1 1 1
(3 )

1 4 4 4

( ) ( )

i

z iz z i z i z i z i

 


  
       

Thus 

3 2 2

2

1 1 1
og (3 ) og ogz

og 4 4 4

( ) ( ) ( )

1 1 1
                               =2 ( log( )) 2 ( (3 ) log( )) 2 ( ) (4 )

4 4 4 4 2

D D D D

L z i L z L
L z

dz dz dz dz
z iz z i z i z i z i

i i i i i i i i
 

  

   




  
     


      

   

 

 

DISCUSSION 

 

Real integration with partial-fraction decomposition can 

be applicable for rational functions, while complex 

integration ( )
c

f z dz can be used on simple closed 

contour c or multiply- connected domain D whether 

( )f z be rational or in the form 
( )

( )n

g z

p z
where ( )g z is 

analytic  at each point inside and on simple closed contour 

c or multiply- connected domain D. Also calculating the 

integral by this method is much simpler and easier than 

using residue theorem or Laurent expansions methods. 

Our proposed method makes Cauchy or Cauchy-Goursat 

theorem or Cauchy's integral formula more efficient. 

 

 

 

2

2(1 sin( )) 1 sin( ) 1 sin( )
2 2 2

1 1 1

                            =2 (1 sin( )) 2 (1 sin( )) 4
2 2

c c c

z z z

dz dz dz
z z z

i i i

  

 
  

  

 
  


   

  
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